39,263 research outputs found

    Performance and evaluation of real-time multicomputer control systems

    Get PDF
    New performance measures, detailed examples, modeling of error detection process, performance evaluation of rollback recovery methods, experiments on FTMP, and optimal size of an NMR cluster are discussed

    Performance and evaluation of real-time multicomputer control systems

    Get PDF
    Three experiments on fault tolerant multiprocessors (FTMP) were begun. They are: (1) measurement of fault latency in FTMP; (2) validation and analysis of FTMP synchronization protocols; and investigation of error propagation in FTMP

    Vertical variation of optical properties of mixed Asian dust/pollution plumes according to pathway of air mass transport over East Asia

    Get PDF
    © Author(s) 2015. This is an Open Access article made available under the terms of the Creative Commons Attribution License 3.0 https://creativecommons.org/licenses/by/3.0/We use five years (2009-2013) of multiwavelength Raman lidar measurements at Gwangju, South Korea (35.10° N, 126.53° E) for the identification of changes of optical properties of East Asian dust depending on its transport path over China. Profiles of backscatter and extinction coefficients, lidar ratios, and backscatter-related Ångström exponents (wavelength pair 355/532 nm) were measured at Gwangju. Linear particle depolarization ratios were used to identify East Asian dust layers. We used backward trajectory modeling to identify the pathway and the vertical position of dust-laden air masses over China during long-range transport. Most cases of Asian dust events can be described by the emission of dust in desert areas and subsequent transport over highly polluted regions of China. The Asian dust plumes could be categorized into two classes according to the height above ground at which these plumes were transported: (case I) the dust layers passed over China at high altitude levels (> 3 km) until arrival over Gwangju, and (case II) the Asian dust layers were transported near the surface and within the lower troposphere (< 3 km) over industrialized areas before they arrived over Gwangju. We find that the optical characteristics of these mixed Asian dust layers over Gwangju differ depending on their vertical position above ground over China and the change of height above ground during transport. The mean linear particle depolarization ratio was 0.21 ± 0.06 (at 532 nm), the mean lidar ratios were 52 ± 7 sr at 355 nm and 53 ± 8 sr at 532 nm, and the mean Ångström exponent was 0.74 ± 0.31 for case I. In contrast, plumes transported at lower altitudes (case II) showed low depolarization ratios (0.13 ± 0.04 at 532 nm), and higher lidar ratio (63 ± 9 sr at 355 nm and 62 ± 8 sr at 532 nm) and Ångström exponents (0.98 ± 0.51). These numbers show that the optical characteristics of mixed Asian plumes are more similar to optical characteristics of urban pollution. We find a decrease of the linear depolarization ratio of the mixed dust/pollution plume depending on transport time if the pollution layer traveled over China at low heights, i.e., below approximately 3 km above ground. In contrast, we do not find such a trend if the dust plumes traveled at heights above 3 km over China. We need a longer time series of lidar measurements in order to determine in a quantitative way the change of optical properties of dust with transport time.Peer reviewedFinal Published versio

    X-Ray Scanner for Atlas Barrel TRT Modules

    Full text link
    X-ray scanners for gain mapping of ATLAS Barrel Transition Radiation Tracker (TRT) modules were developed at Hampton University for quality assurance purposes. Gas gain variations for each straw of the TRT modules were used to decide whether wires should be removed or restrung, and to evaluate overall module quality.Comment: Conference proceeding in the XXIV Physics in Collisions Conference (PIC04), Boston, USA, June 2004, 3 pages, LaTeX, 6 eps figures. MONP0

    Optimal design and use of retry in fault tolerant real-time computer systems

    Get PDF
    A new method to determin an optimal retry policy and for use in retry of fault characterization is presented. An optimal retry policy for a given fault characteristic, which determines the maximum allowable retry durations to minimize the total task completion time was derived. The combined fault characterization and retry decision, in which the characteristics of fault are estimated simultaneously with the determination of the optimal retry policy were carried out. Two solution approaches were developed, one based on the point estimation and the other on the Bayes sequential decision. The maximum likelihood estimators are used for the first approach, and the backward induction for testing hypotheses in the second approach. Numerical examples in which all the durations associated with faults have monotone hazard functions, e.g., exponential, Weibull and gamma distributions are presented. These are standard distributions commonly used for modeling analysis and faults

    Performance analysis of low-flux least-squares single-pixel imaging

    Full text link
    A single-pixel camera is able to computationally form spatially resolved images using one photodetector and a spatial light modulator. The images it produces in low-light-level operation are imperfect, even when the number of measurements exceeds the number of pixels, because its photodetection measurements are corrupted by Poisson noise. Conventional performance analysis for single-pixel imaging generates estimates of mean-square error (MSE) from Monte Carlo simulations, which require long computational times. In this letter, we use random matrix theory to develop a closed-form approximation to the MSE of the widely used least-squares inversion method for Poisson noise-limited single-pixel imaging. We present numerical experiments that validate our approximation and a motivating example showing how our framework can be used to answer practical optical design questions for a single-pixel camera.This work was supported in part by the Samsung Scholarship and in part by the US National Science Foundation under Grant 1422034. (Samsung Scholarship; 1422034 - US National Science Foundation)Accepted manuscrip
    • …
    corecore